Muscle synergies may improve optimization prediction of knee contact forces during walking.
نویسندگان
چکیده
The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values.
منابع مشابه
The Effect of High Heel Shoes on Tibiofemoral and Patellofemoral joint Contact Forces and Muscle Forces
Introduction: High heel shoes affect the knee joint and can cause arthritis in the tibiofemoral (TFJ) and patellofemoral joints (PFJ). There is a dearth of research investigating the contact forces of TFJ and PFJ. Therefore, the purpose of this study was to assess the effect of high heel shoes on muscle forces as well as TFJ, and PFJ contact forces during walking. Materials & Methods: A tot...
متن کاملEvaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
Musculoskeletal modeling and optimization theory are often used to determine muscle forces in vivo. However, convincing quantitative evaluation of these predictions has been limited to date. The present study evaluated model predictions of knee muscle forces during walking using in vivo measurements of joint contact loading acquired from an instrumented implant. Joint motion, ground reaction fo...
متن کاملIndividual muscle contributions to the axial knee joint contact force during normal walking.
Muscles are significant contributors to the high joint forces developed in the knee during human walking. Not only do muscles contribute to the knee joint forces by acting to compress the joint, but they also develop joint forces indirectly through their contributions to the ground reaction forces via dynamic coupling. Thus, muscles can have significant contributions to forces at joints they do...
متن کاملThe influence of neuromusculoskeletal model calibration method on predicted knee contact forces during walk- ing
Neuromusculoskeletal models used to predict muscle and joint contact forces for a specific individual require specification of muscle-tendon, skeletal geometry, and neural control model parameter values. Though these parameter values should ideally be calibrated using in vivo data collected from the subject, they are often taken from generic models. This study explored the influence of three mo...
متن کاملThree-dimensional knee joint contact forces during walking in unilateral transtibial amputees.
Individuals with unilateral transtibial amputations have greater prevalence of osteoarthritis in the intact knee joint relative to the residual leg and non-amputees, but the cause of this greater prevalence is unclear. The purpose of this study was to compare knee joint contact forces and the muscles contributing to these forces between amputees and non-amputees during walking using forward dyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanical engineering
دوره 136 2 شماره
صفحات -
تاریخ انتشار 2014